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On the Critical Behavior of the Ising Model 
with Mixed Two- and Three-Spin Interactions 
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A study is made of a two-dimensional lsing model with staggered three-spin 
interactions in one direction and two-spin interactions in the other. The phase 
diagram of the model and its critical behavior are explored by conventional 
finite-size scaling and by exploiting relations between mass gap amplitudes and 
critical exponents predicted by conformal invariance. The model is found to 
exhibit a line of continuously varying critical exponents, which bifurcates into 
two Ising critical lines. This similarity of the model with the Ashkin-Teller 
model leads to a conjecture for the exact critical indices along the nonuniversal 
critical curve. Earlier contradictions about the universality class of the uniform 
(isotropic) case of the model are clarified. 

KEY WORDS:  Ising models; finite-size scaling; critical phenomena; mul- 
tispin interactions; conformal invariance; Ashkin Teller model; Potts models. 

1. I N T R O D U C T I O N  

Ising models with multispin interactions are known to exhibit a rich variety 
of critical behavior. The classical examples in two dimensions are the eight- 
vertex model (1~ and the Ashkin-Teller model, 121 both of which may be for- 
mulated as Ising models with two- and four-spin interactions, (3) and the 
Baxter Wu model, ~4) which is an Ising model with three-spin interactions 
around each elementary face of a triangular lattice. Although these models 
are formulated in terms of Ising [Z(2)]  variables, their multispin interac- 
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tions render the relevant nonlocal symmetry Z(2 ) |  Consequently, 
the Baxte>Wu model is believed to belong to the same universality class as 
the four-state Ports model, ~3'5) while the eight-vertex and Ashkin-Teller 
models exhibit critical lines along which the critical indices vary con- 
tinuously with the multispin coupling. (3) In the Ashkin Teller model, but 
not in the eight-vertex model, this line ultimately bifurcates into two Ising 
critical lines; the bifurcation point corresponding to the four-state Ports 
model.( 3,6~ 

In this paper we introduce and study an Ising model that shows the 
same richness as the Ashkin Teller model but has only two- and three-spin 
couplings. The model is an extension of the three-spin Ising model 
proposed by Debierre and Turban (7) (see also Penson et al.(8)). Various 
investigations of the critical behavior of this model have been contradic- 
tory. Our generalization was motivated by the idea that these contradic- 
tions could be resolved by viewing the behavior in a wider parameter 
space. As we shall see, this expectation is fruitfully borne out. The model is 
defined explicitly in the next section, where we also show that it is self-dual. 
In Sections 3 and 4 we obtain the row-to-row transfer matrix and take a 
"r-continuum limit" to define a quantum Hamiltonian. Section 5 is 
dedicated to the study of this quantum Hamiltonian by standard finite-size 
scaling; we obtain the phase diagram and the critical exponent v. In Sec- 
tion 6, we exploit consequences of conformal invariance of the infinite 
system to refine our estimates of critical exponents and to estimate the con- 
formal anomaly number c. The paper closes with a general discussion and 
summary of our results in Section 7. 

2. T H E  M O D E L  

Consider a two-dimensional square lattice divided into three sublat- 
tices denoted by �9 [], and ~ ,  as in Fig. 1. Each lattice site, labeled by an 
integer pair (i, j), is populated by an Ising variable o-(i, j ) =  +1. We con- 
sider three-spin interactions in the x direction (which for future con- 
venience we refer to as the spatial dimension) and two-spin interactions in 
the y direction (temporal dimension). These interactions are allowed to be 
"staggered" with one sublattice distinguished. The Hamiltonian of interest 
is then 

- /~H  = ~ (H~,j + hr~i,j ) (2.1) 
( i , j )  

where 

H ~ =  Ko~(i  , j )  ~r(i + 1, j )  a(i + 2, j )  + Kl~r(i + 1, j)  ~( i+  2, j)  a(i-t- 3, j)  

+ K 1 a(i + 2, j)  ~r(i + 3, j)  cr(i + 4, j)  (2.2) 
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Fig. 1. Sublattices used to define model (2.1). 

~t x" 

and 

Hi.= K'la(i, j) a(i, j+  1) + K'o~(i+ 1, j+  1) a( i+ 1, j) 

+K'la(i+2, j) ~(i+ 2, j +  1) (2.3) 

where Ko = ~Jo, Kl =flJ1 (K'o =flJ~o, K'I =flJrl) are the couplings in the 
space (time) direction, all couplings being ferromagnetic. The model is 
invariant under a nonlocal symmetry, which corresponds to a global Z(2) 
transformation of any two sublattices. As a consequence of this 
Z ( 2 ) |  symmetry, the ground state is fourfold degenerate. The 
possible ground states are shown schematically in Fig. 2 and we shall refer 
to these states as (a), (b), (c), (d) as indicated in the figure. 

This ground-state degeneracy is identical to that found in the 
Ashkin Teller model defined by the Hamiltonian ~3'6) 

-f i l l= 2 [Kz(aiaJ+'Ci'cj)+ KMTi~j'ci'cj] (2.4) 
( i , j )  

where K2 = flJ2, K4 =- flJ4 are the coupling constants and the sum is over all 
bonds of a square lattice, the sites of which are populated by a pair 
(a = +1, ~ = _+1) of Ising spins. 

A further similarity between (2.1) and the Ashkin-Teller model is 
revealed if we calculate the (zero-temperature) energies of possible domain 
walls between the different ground states. For  each pair of ground states, 
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Fig. 2. Ground states of model (2.1). 

three different walls can be distinguished by the location of the wall relative 
to the underlying sublattices (see Table I). Since two sublattices (O and 
O) are equivalent, two of the walls have the same energy, with the third 
wall "heavier" or "lighter" depending on the relative values of Jo and J~. If 
we single out one of the phases, say (a), as a reference phase, then the 
energy of the lowest energy walls between the reference phase and the other 
phases can be summarized as in Fig. 3a. We observe that there is a quan- 
titative change in the relative energies of the domain walls and hence 
presumably in low-temperature excitations of the system when J1 = Jo. 

The possible significance of this observation can be seen if we similarly 
depict (Fig. 3b) the energies of domain walls in the Ashkin-Teller model 
(2.4). Again we observe the quantitative change in the relative energies of 
domain walls that occurs when J2=J4, a change that in this case 
corresponds to a radical change in the phase diagram of the model. We 
shall confirm in Section 5 that this similarity between the low-temperature 
excitations of (2.1) and those of the Ashkin-Teller model does extend to 
definite similarities in the phase diagrams and critical behavior of the two 
models. 

Two particular cases of the Hamiltonian (2.1) deserve a few additional 
comments. The first is the case K0, K; ~ oe, which freezes spins on sublat- 
rice [] and leads to two decoupled Ising models. This point in the phase 
diagram of (2.1) is consequently expected to be the analogue of the point 
where the four-spin coupling vanishes in the Ashkin Teller model. The 
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Fig. 3. Relative domain  wall energies for (a) model  (2.I),  (b) Ashkin-Telter  model.  
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second special case is obtained by setting K 0 = K1, K; = K'I, which reduces 
(2.1) to the three-spin Ising model introduced by Debierre and Turban (7) 
(see also Penson et al. (8~ and Turban(9)). Figure 3 suggests that this limit 
corresponds to the point at which the Ashkin Teller model reduces to the 
four-state Potts model. This correspondence supports the conjecture (8'9) 
that the spatially uniform model belongs to the same universality class as 
the four-state Potts model. Direct finite-lattice calculations (7"8'1~ on this 
uniform model have been contradictory, although a recent, more detailed 
analysis (1~) did add support to the conjecture. Nevertheless, a study of the 
extended model (2.1), particularly in comparison with the Ashkin-Teller 
model, should shed additional light on the nature of criticality in the 
uniform model. 

3. T R A N S F E R  M A T R I X  A N D  D U A L I T Y  T R A N S F O R M A T I O N  

The row-to-row transfer matrix T for the model (2.1) is easily derived 
by standard methods (see, e.g., Ref. 12). We write 

with 

T(Ko, K,,  K'o, Ki) = TI" T2 

r , - -  1]  
i =  oO 

z (~z z 
-I- K 1 0 " 3 i +  2 3 i +  3 0 " 3 i + 4 )  

z z z z z z exp(Ko 0"3i0"3i + 1 0"3 i+  2 -'~ g l  ~ l 0 3 i +  2 (Y3i+ 3 

(3.1) 

(3.2) 

and 

f i  x x x T2 = Coc2exp(Vla3i+ , g o o . 3 i +  1 Or t V 1 0 . 3 i  + 2 ) , (3.3) 
i =  oO 

where a~Y and a~ are Pauli spin matrices. The new constants are related to 
the old coupling constants through 

1 1 
V; = -- ~ in tanh K;, V'~ = - ~ in tanh K'I 

c o = (2 sinh 2K'o) m, e 1 = (2 sinh 2K'l) I/2 (3.4) 

To perform a dual transformation on (2.1), we define dual 
variables (7,9) 

-x . . . .  - z _  1-I (3.5) f f i  - - O ' i ( ~ i + l f Y i + 2 ~  ~ri - -  i 3k  i - - 3 k  1 
k>~O 
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which obey the same algebra as the original Pauli matrices. Inverting, we 
can write 

a i = ~  ~~ ~~ (3.6) x _ 2 ( 7 i _ 1 •  i 

In terms of these new dual variables, the transfer matrix is still given by 
(3.1), but with 

7"2 = CoC2exp(V'o(73iff3i+lff3i+2 + r l  ~  1 ~  2 ~  3 . . . .  
i =  -ct3 

+ V'I ~ , +  28~i+ 38~i+ 4) (3.7) 

T~= exp(K~o3~+Koa3~+~+K~o3i+2 ) (3.8) 
i =  --co 

Comparison of (3.2), (3.3) and (3.7), (3.8) shows that (2.1) is self- 
dual, (7"13'14) the dual transformation simply relating two different points in 
the parameter space: 

T(Ko, KI, V'o, V't)= T(V'o, V'l, K o, K~) (3.9) 

The self-dual surface (fixed under the duality transformation) follows 
by equating Ko= V;; KI = V]. Hence, from (3.4) the self-dual surface is 
given by 

e 2Ko = tanh K~, e 2KI = tanh K', (3.10) 

4. Q U A N T U M  H A M I L T O N I A N  L I M I T  

Instead of working directly with model (2.1), we will base our analysis 
on a "z-continuum" limit (12,15) of the transfer matrix, which corresponds to 
a quantum Hamiltonian in (1 + 1) dimensions with "time" continuous. The 
well-known advantages of this formalism are the resulting one-dimensional 
geometry of the problem and, particularly from a numerical point of view, 
the fact that the Hamiltonian is a sparse matrix compared to the transfer 
matrix, which is dense. 

The two-dimensional classical model (2.1) is reduced to a (1 + 1)- 
dimensional quantum model by taking the extreme anisotropic limit 
(Ko, K1)--*O, (K'o, K'1)-o co. This limit can be performed in several ways. 
Following the analogous treatment (~6) of the Ashkin-Teller model, we 
choose the particular parametrization 

K0 = z, K1 = ~z (4.1a) 

exp(--2K;) = 2z, exp( - 2K'1 ) = 2c~r (4.1b) 
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and force ~ --+ 0 with )~ and ~ held constant. In this limit the transfer matrix 
(3.1)-(3.3) can be written as 

T =  1 - r g +  O(r 2) (4.2) 

where H is the required quantum Hamiltonian given by 

-- H(I~, o~) = E [(G3i(Tz3i+ 1 ~r~i + 2 DU ~G~i+ 1 (TZ3i+ 2 (~i+ 3 27 O~(~Z3i+ 2 (T~i +30-~i+ 4) 
i 

+ ^ "r .V .'r 
,~(ea?, + a3,+, + ~a3,+ 2)] (4.3) 

The parametrization (4.1) has the virtue of simplifying the self-dual 
curve, which now becomes 2 = 1 with c~ a free parameter, exactly as occurs 
in the quantum Hamiltonian limit of the Ashkin-Teller model. (~6) The dual 
transformation (3.5) can also be applied directly to the Hamiltonian (4.3), 
yielding 

1 

This implies that the critical point for all e should occur at 2 = 1 provided 
the transition is unique. 

5. F I N I T E - S I Z E  S C A L I N G  

To explore the critical behavior of (4.3), we have applied finite-size 
scaling techniques. (~7a8) The method is by now standard. The first step is 
the calculation of low-lying eigenenergies of (4.3) on a finite chain of L sites 
with periodic boundary conditions. To preserve the symmetry of the model, 
we require L to be a multiple of three. 

The ensuing finite-size scaling analysis is clarified if we choose as a 
basis for the matrix representation of H one in which all ~r;Y (i = 1, 2,..., L) 
are diagonal. In this basis, the Hilbert space associated with H separates 
into disjoint sectors labeled the eigenvalues of the "parity" operators 

L/3 L/3 

21 = ~ I  G~i(T~i+l' ~2~-  ~ I  ( ~ i ( ~ i + 2  ' ~ 3 ~ - ~ 1  ' ~ 2  ( 5 . 1 )  
i=1  i=1 

which independently commute with H for all 2 and cr 
On a finite chain the ground-state energy Eo(+ + )  of (4.3) is the 

energy of the lowest lying state in the sector ~a 1 = +, ~ = + (henceforth 
denoted the ground-state sector). As a consequence of the equivalence of 
the two sublattices O and ~ ,  the sectors ( ~ =  +, ~ a 2 = - )  and 
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(~1 = - ,  N2 = + )  are degenerate.  We m a y  thus define two different mass  
gaps for the model:  

G~(2, ~ ) = E o ( +  - ) - E o ( +  +) ,  G~(Z, c Q = E o ( - - - ) - E o ( +  + )  (5.2) 

where Eo( + - ) and Eo( - -- ) are the energies of the lowest lying states in 
the sectors ( ~  = +,  ~2 = - )  and (~1 = - ,  ~ = - ) ,  respectively. 

The phase d iag ram can now be explored by applying 
phenomenologica l  renormal iza t ion  (17'18) to these gaps. For  fixed cq we 
est imate the critical coupling 2 c by ext rapola t ing the sequence of values of 
2~(L) obta ined  by solving 

La~L(cq 2 ) / ( L -  3) a~_ 3(~z, .).) = l, i =  1, 2 (5.3) 

If the infinite system has a unique phase transit ion, both  sequences should 
converge to the self-dual point  2, = 1, while if there are two phase trans- 
itions, associated with the two mass  gaps G 1 and G 2 closing separately,  the 
two sequences should converge to different points  2,! and 2, 2 such that, by 
duality, z C" 1 z,.~ 2 = 1. Est imates for the critical curve in the c~-2 pa ramete r  space 
obta ined by using lattices of size L = 6, 9, 12 in (5.3) are shown in Fig. 4, 

!4 t 
I i i I / : : ~ -  

I ; /  

//~" ! 

1.3 (6,9)7/(/ 

+'/%.(9,12) ./4 1.2 (~) / . /  
. 8  

1.1 / ~ / " ) /  

1.o . . . . . . . .  I ~ ) - - -  ----"(6'9) js: . r  ~ - 

08 | 

0.7 

0 , 6 =  

i 0.5 110 115 210 215 310 315 4.0 O{ 

Fig. 4. Phase diagram of Hamiltonian (4.3), 
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Table II. 
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Phenomenological Renormalization Estimates of Critical Couplings 
Obtained from Chains of Length L and L - 3  Sites (see test) 

c~ = 0.5 c~ = 1.0 ~ = 1.5 c~ = 4.0 
L 

)o~(L) 22(L)  ~ _ 2 ).~(L) - 2~(L) 2~(L) 2~(L) 2~(L) 2~(L)  

6 
9 

12 
15 
18 

Extrapolated 
estimate 

1.016646 1.052010 1.056100 
1.012998 1.009578 1.011965 
1.004741 1.003270 1.004908 
1.002270 1.001459 1.002632 
1.001273 1.000764 1.001640 

1.035964 1.098402 0.837525 1.535687 
0.997671 1.034407 0.738727 1.436336 
0.992996 1.021309 0.711854 1.430845 
0.992061 1.016182 0.704748 1.429352 
0.991925 1.013578 0.702653 1.428240 

1.00003 1 . 0 0 0 0 2  1 . 0 0 0 0 8  0.99188 1 .0074  0.70178 1.4249 

while Table II lists, for selected values of c~, estimates resulting from pairs 
of larger lattices together with extrapolated values obtained by using van 
den Broeck-Schwartz approximants/~9'2~ Evidently, the (9, 12) estimate of 
the critical curve shown in Fig. 4 is almost indistinguishable, on the scale 
of the figure, from the true curve. 

Figure 4 clearly shows a bifurcation point on the critical curve, at 
which a new intermediate phase appears in exactly the same fashion as 
occurs in the quantum Ashkin-Teller model. (16'21) It is also clear, from our 
finite-lattice data, that for fixed 2 

Gl(e)  < G2(e) for e <  1 

G~(c 0 > az (e )  for c~ > 1 (5.4) 

a~(c~) = G~(~) for c~ = 1 

Moreover, for given ~, the estimators 2~.(L) always decrease as the lattice 
size increases; these results strongly suggest that for 0 < c~ ,%< 1 the transition 
is unique, occurring at the self-dual point 2c-- 1, while for c~ > 1 there are 
two phase transitions. A similar finite-size analysis (21) of the quantum 
Ashkin-Teller model reveals that the relations (5.4) are also true for its two 
mass gaps, the four-state Potts model being the point at which the two 
gaps become degenerate and the critical line bifurcates. This similarity 
between the uniform case c~ = 1 and the four-state Potts model supports the 
conjecture(7 11~ that both models are in the same universality class. 

To characterize the phases in Fig. 4, we observe that G ~ is associated 
with the correlation function between spins in sublattice �9 or ~ ,  
( a~ ( 0 )  a~(r)), ( a S ( 0 ) a ~ ( r ) ) ,  while G 2 is related to that between spins 
in sublattice [],  ( a ~ ( 0 )  a ~ ( r ) ) .  As a consequence, three phases can be dis- 
tinguished: 
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1. A paramagnetic (P) phase (large 2), where 

( ~  ) = ( ~ )  = ( ~  ) = 0 (5.5) 

and the full symmetry Z(2 ) |  is present. 

2. A ferromagnetic (F) phase (small 2), where 

@ ~ ) r  ( a ~ )  r  ( c ~ )  r  (5.6) 

and all sublattices are ordered, the symmetry being totally broken. 

3. A partially ordered (G) phase, where 

(~r~) r  but ( a ~ )  =0,  ( a ~ ) = 0  (5.7) 

and a partial Z(2) symmetry remains corresponding to global transfor- 
mations of the sublattices �9 and ~ .  

We turn now to the nature of the (continuous) transition that occurs 
at the various critical curves identified by the preceding analysis. We con- 
sider first the behavior (as a function of L) of the/3-function (~7'22) 

i lL(  ~, c~) = - G ~ ( 2 ,  c Q / E G ~ ( 2 ,  c~) - 22G~.;.(2, cQ], i =  1, 2 (5.8) 

i where G~.~. = C~GL/C2. If, on an infinite lattice, the gap G~(2, ~) vanishes as 
2 approaches 2c(cQ as 

a s ( z ,  ~ ) ~  [,~,-,~.(c~)] (5.9) 

then by finite-size scaling (~7/ 

flL,c =- fl~(2c(~), ~) ~ A L  1iv (5.1o) 

as L --, oe. Hence, a suitable estimator for the exponent v is 

I n ( i lL ,S i lL  i ~ 1 
3.~.~__,_ as L ~  oe (5.11) 

YL= - l n [ L / ( L - 3 ) l  v 

For e < 1, one could, in principle, use both G 1 and G 2 to define /3- 
functions. However, for numerical convenience we have considered only G j. 
In addition, for c~<l we assumed 2c=1,  while for c~>l we used the 
extrapolated values of the estimators obtained by phenomenological renor- 
realization (see Table II). 

A typical set of results (for c~=0.2) is shown in Table III. The 
sequence of estimates obtained from (5.l 1 ), shown in the second column, is 
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Table III. 13-Function Est imates of  
1Iv for a = 0 . 2  

L Y L Three-point  

6 1.3420 
9 1.1949 

12 1.1566 
15 1.1412 
18 1.1331 

alt-e alg 1.1035 
0 alg 1.1125 

1.1259 
1.1209 
1.1169 

clearly monotonic decreasing, but unfortunately relatively short. Assuming, 
which is reasonable on the basis of finite-size scaling, ~71 that 

Yc = l/v + O ( L - ' )  (5.12) 

we have attempted to extrapolate these estimates of 1/v by the alternating 
algorithm (2~ and the 0 algorithm,/23"24) both of which are designed to 
accelerate sequences converging as in (5.12). In addition, we have tried to 
extract the limit y~  (=  1/v) by three-point fits 125) of the YL, 

Yc = Y~  + b / U  (5.13) 

Unfortunately, the brevity of the finite-lattice data results in some disparity 
among these various extrapolation procedures. However, 

l / v =  1.12_+0.02 (~ = 0.2) (5.14) 

would appear to be a conservative but reliable estimate. The corresponding 
final estimates for some other values of e are given in Table IV. 

It is apparent from Table IV that, as in the quantum Ashkin-Teller 
model, the critical exponent v is a continuous function of the coupling c~. 
For e small, v appears to approach the Ising value (v = 1), which is con- 
sistent with the discussion in Section 2. 4 Also, for c~ >4 ,  estimators of v 
tend toward the Ising value, suggesting that the two phase transitions that 
occur for c~> 1 are Ising-like. Around ~ =  1 convergence is poor, as 
occurs 12~) in the Ashkin-Teller model around the four-state Potts model 
point. 

4 It is important ,  however, to note that the limiting case /'2o ~ oo in (2.1), where the model is 
equivalent to a two-decoupled-Ising model, corresponds in (4.3) to the limit c~ ~ 0, and not  

= 0, where the system does not  in fact have a phase transition. 
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Table IV. Extrapolated Estimates of 1Iv 

1/v 

c~ Estimate Conjecture ~ 

0.01 1.02 1.0063 
0.2 1.12 1.1136 
0.5 1.26 5/4 
1.0 1.37 b 3/2 
4.0(2~) 0.98 1 
4.0(2~) 1.05 1 

a 1 / v =  1 rr/[2cos 1 (_~) ]  (see text). 
b From Ref. 11. 

These results for v induced us to conjecture that v for (4.3) is given as 
a function of c~ by a similar relation as in the Ashkin Teller model,/~61 
namely 

1/v(~) = 2 - ~ / [2  c o s - 1 ( _  ~)]  (5.15) 

The conjectured values in Table IV were obtained from this formula. We 
discuss this point further in the next section. 

6. MASS GAP AMPLITUDES 

Statistical mechanical systems at criticality are believed to be confor- 
mally invariant. (26 281 In two dimensions, this assumption is particularly 
significant (for a recent review see Ref. 28). Specifically, Cardy (29'3~ has 
derived a set of remarkable relations between the eigenvalue spectrum of 
the transfer matrix in a strip of finite width and the anomalous dimensions 
of the operator algebra describing the critical behavior of the infinite 
system. These results can be transcribed (31) to the quantum Hamiltonian 
formalism in which we are interested. 5 

The pertinent results for our purposes are as follows. Corresponding 
to each primary operator ~b in the operator algebra of the infinite system 
there exists a set of eigenstates of the quantum Hamiltonian on a periodic 
chain of L sites with energies for 2 = 2~. given by 

En,n,=Eo+(27c/L)((xo+n+n,)+o( L 1), n ,n '=0 ,1 ,2  .... (6.1) 

5 For a discussion of the validity of the assumption of conformal invariance itself for a model 
such as (2.1) or (4.3) with mixed interactions see Ref. 11. 
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as L--+ 0% where xo is the anomalous dimension of ~b. The constant ff is 
unity in the transfer matrix formalism, but in the Hamiltonian case is 
model-dependent, reflecting the fact that the singular behavior of the 
Hamiltonian is insensitive to multiplication of H by a arbitrary 
constant.(21,3~ 34) The primary operators that appear in (6.1) are those 
governing the possible correlation functions. 

Consider now the Hamiltonian (4.3). We can identify the lower mass 
gap amplitudes with the primary relevant operators as follows. The energy 
operator is related to the first excited state in the ground-state sector, i.e., 

G ~ = E1 ( + + ) -- Eo( + + ) = 27c~xjL + o (L  - 1) (6.2) 

where x~ = 2 - 1Iv is the dimension of the energy operator. There are two 
order operators for this system, one governing the sublattice ~ and the 
other governing sublattices O and O. As discussed earlier, they are related 
to the sectors (~1 = - -1 ,  ~1 = -~1) and ( ~  = - 1 ,  ~2-- - 1 ) ,  respectively, 
leading to the identification 

G l = E o ( -  + ) - E o ( +  + ) = 2 7 Z { x o / L + o ( L  -~) (6.3) 

G ~ = E o ( - - ) - E o ( +  + ) = 2 r c ~ x e / L + o ( L  ~) (6.4) 

where x o  and XL_ are the dimensions of the two operators. 
It is interesting to observe that as a consequence of the existence of 

these different operators, the Hamiltonian (4.3) responds differently to 
magnetic fields h [] and h o applied to sublattices [] and �9 (or O), respec- 
tively. In particular, the singular parts of the susceptibilities associated with 
these fields behave as 

and 

82Eo/O2hu Ihn =O H (2--2,.) ~ (6.5) 

a2Eo/82ho ~o ~ (2 - 2c)-~ '  (6.6) 

where 7~ and Yo are related to x e  and x o through 

xL: = �89 7D/v), x o = � 8 9 1 6 9  (6.7) 

In order to extract the anomalous dimensions from finite-lattice data 
and equations (6.2)-(6.4), we need to calculate the constant {. This can be 
done from the difference between higher energy states associated with the 
same primary operator. (3~) For  example, in the sector ( ~  = - 1 ,  ~'2 = +1), 
the difference 

Z c =  E~( - + ) - E o ( -  + ) =  2rcr + o (L  -1)  (6.8) 
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where E l ( -  + ) is the lowest energy with nonzero momentum. In practice 
for c~ ~< 1, we estimated x~, x c ,  and Xo by forming the ratios 

r~(L) = G ~  r o ( L )  = G~/ZL,  ru (L)  = G~/ZL (6.9) 

where all energies were evaluated at 2 = 1. 6 From (6.2)-(6.4) and (6.8) we 
expect 

r~(L) --* x~, r o ( L  ) ~ x o ,  r ~ ( L )  ~ x~ (6.10) 

respectively, as L ~ ~ .  The limits were numerically estimated by fitting r's 
for three successive lattices to 

r (L)  = x + a / U  (6.11) 

Table V summarizes this analysis for c~=0.2. The convergence is 
extremely good, leading to the confident estimates of 

x~ = 0.885 _+ 0.005, xo=0.126__0.002,  x• = 0.222 _+ 0.002 (6.12) 

The results of corresponding analyses for other values of c~ are shown in 
Table VI, the convergence deteriorating as c~ approaches unity. These 
results clearly establish that for c~< 1, x~, and x• are functions of 
(approaching Ising values as e ~ 0), while Xo is constant. In addition, the 
ratio xE / (2XoX~)  appears to be almost constant ( ~  1) for all cc 

The similarity between the results of Table VI and those of the quan- 
tum Ashkin-Teller model (211 is complete if we identify the pair ( xo ,  7o)  
with the anomalous dimension x m of the magnetization operator  and the 

6 The required energy levels were computed  by the Lanczos algori thm from appropriately 
selected initial states (see Refs. 11 and 34). Some care (and numerical experimentat ion)  is 

necessary to ensure that any particular initial state yields the successive eigenenergies of the 
sets (6.1). 

TableV. Extrapolation of Mass Gap Amplitude Ratios for a=0 .2  

L r~,(L) Three-point  fit ro(L ) Three-point  fit r , (L)  Three-point  fit 

6 1.3086 - -  0.2027 - -  0.3580 - -  
9 1.0386 - -  0.1527 - -  0.2695 - -  

12 0.8946 0.3522 0.1293 0.0723 0.2282 0.1276 
15 0.8901 0.8897 0.1277 0.1275 0.2253 0.2248 
18 0.8876 0.8816 0.1269 0.1250 0.2238 0.2205 

822/46/3-4-2 
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Table VI. Anomalous Dimensions for Hamiltonian (4.21} 

X e X 0 X ~  

c~ Estimate ~ Conjecture b Estimate ~ Conjectur& Estimate ~ Conjecture b 

0.01 0.999 0.99367... 0.125 1/8 0.248 0.24842... 
0.1 0.938 0.94005... 0.125 1/8 0.235 0.23501._ 
0.2 0,885 0.88638.. 0.126 1/8 0.222 0.22159... 
0.4 0.780 0.79241... 0.125 1/8 0.196 0.19810.,. 
0.5 0.740 3/4 0.125 1/8 0.183 3/16 
0.8 0.632 0.62880... 0.123 1/8 0.148 0.15720... 
1.0" 0.63 1/2 0.13 1/8 0.13 1/8 
3.0(2~) 1.00 1 0.125 1/8 - -  - -  
3.0(x~) 1.02 1 - -  - -  0.13 1/8 
4.0(fl~) 1.00 1 0.127 1/8 - -  - -  
4.0(22 ) 1.01 1 - -  - -  0.122 1/8 

" Numbers quoted are central estimates with (subjective) errors of _+(2-5) in the last digit [ef. 
Eq. (6.12)]. 
See Eqs. (6.14) (6.16). 
See Ref. i1. (For ct = l, xLj and xc~ are equal by symmetry.) 

critical exponent  y,~ of the magnetic susceptibility, respectively, and the 
pair (x•, 7~)  with the dimension xp of the electric polarization operator  
and the critical exponent  ?p of the electric susceptibility. As a consequence 
of this correspondence,  our  results suggest the following conjecture for the 
critical indices of (4.3) for ~ ~< 1: 

x~ = 2 - 1/v = ~/2 c o s - i ( - c ~ )  (6.13) 

x o = 1/8 (6.14) 

x ~  = x j 4  (6.15) 

In Table V! these are the "conjectured" values. The agreement with the 
actual numerical estimates is gratifying. 

For  e > 1, the results of Table VI are consistent with both  transitions 
being Ising-like. The apparent ly poorer  agreement can be attr ibuted at 
least in part  to errors in the location of the critical couplings of the infinite 
lattice. The extrapolated critical coupling for c~ = 4 is given in Table II, 
while for ~ =  3 these values are 21(oo)=0.79929 and 2 2, ( o e ) =  1.25157. 

In addit ion to these predictions for mass gap amplitudes that have 
been exploited above, conformal  invariance also predicts (35'36) that the 
ground-state energy of H at 2 = 2,. should behave as 

E o / L  = eo - ~ c ~ / L  2 + o(L -2)  (6.16) 
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Table VII. Estimates of Conformal Anomaly 

451 

a b - r cc ( , / 6  z = 27z[  c 

0.1 0.221 2.648 1.002 
0.2 0.434 5.20 1.00 
0.4 0.823 9.86 1.00 
0.8 1.45 18.0 0.97 
1.0 1.68 20.3 1.00 
3.0(2)) 1.3 64 0.49 
3.0(22 ) 1.6 80 0.48 
4.0(),~) 1.41 66.8 0.507 
4.0(2~) 2.00 95.0 0.505 

as L ~ oo, where e o is the infinite-lattice value and c is the central charge or 
conformal anomaly of the appropriate conformal class of the transition in 
the bulk system. (28'3v) Hence, finite-lattice calculations can, in principle, 
allow c to be directly estimated. 

In practice, the extraction of c from finite-lattice data is delicate 
because of the necessity of estimating the (unknown) infinite-lattice limit eo 
and also, for a quantum Hamiltonian, of independently estimating the con- 
stant [. We have attempted to estimate c by fitting (i) data for E o ( L )  from 
two successive lattices to 

E o ( L  ) = L e  o - b / L  (6.17) 

and (ii) the sequence (6.8) to 

L Z L  = Z + w / L '  (6.18) 

using data from three lattices. An estimate of the conformal anomaly c is 
then given by 

c = 12b/z  (6.19) 

and is tabulated in Table VII. 
For  ~ ~< 1, the estimates of c are slightly larger than the value of c = 1 

expected for a line of continuously varying critical exponents/37) Given the 
numerical difficulties in extracting c, we do not place any emphasis on this 
discrepancy. On the other hand, for ct > 1 the estimate of c is dramatically 
different and consistent with that of the Ising model, ~ namely c =  1/2. 
This change in the value of c as c~ passes through ~ = 1 is identical to that 
found in the Ashkin-Teller m o d e l .  (38'39) 



452 Aicaraz and Barber 

7. C O N C L U S I O N  A N D  S U M M A R Y  

In this paper we have studied the three-spin quantum Hamiltonian 

- H ( 2 ,  ~z) = ~ [ ( a~ ia~ i  + l a~3i + 2 + O~l~i +10"~i +20"~i + 3 ~- ~0"3i + 2 0"3i • + 20"~i + 4) 
i 

x 2(c~a~i + a~i + l + ~a~i+ 2)] (7.1) 

Our study clearly indicates that the phase diagram of this model has the 
same topology as that of the quantum Ashkin-Teller model. For ~z ~< 1, a 
single phase transition occurs at the self-dual point 2 = 2,. = 1 with critical 
indices conjectured to be given by 

x , = 2 - 1 / v = - a / 2 c o s  l (_~)  (7.2) 

xc  = 1/8 (7.3) 

x o = x  j 4  (7.4) 

while for c~ > 1 two phase transitions in the universality class of the Ising 
model appear. From our generalized quantum model it is clear that the 
uniform model c~ = 1 belongs to the same universality class as the four-state 
Potts model and Baxter-Wu model, clarifying earlier controversial con- 
clusions about this point, the poor convergence reported in various 
studies(7 11> being a consequence of the well-known marginal effects at the 
four-state Potts model. 

Finally, we would like to mention that although our numerical 
analysis has been performed in the Hamiltonian formalism, we believe that 
the same critical behavior is shared by the classical model (4.1) and the 
classical Ashkin Teller model. 
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